HFpEF in Focus: Scientific Rationale for the RESPONDER-HF Trial

Sanjiv J. Shah, MD Northwestern University Feinberg School of Medicine

CRF[®] TECHNOLOGY AND HEART FAILURE THERAPEUTICS

Disclosures of relevant financial relationships

Within the prior 24 months, I have had a financial relationship with a company producing, marketing, selling, reselling, or distributing healthcare products used by or on patients:

Research Support:

NIH/NHLBI, AHA, AstraZeneca, Boston Scientific, Corvia, Pfizer, and Tempus

Consulting/Advisory Board:

35Pharma, Abbott, Alleviant, AstraZeneca, Amgen, Aria CV, Axon Therapies, BaroPace, Bayer, Boehringer-Ingelheim, Boston Scientific, BridgeBio, BMS, Corvia, Cytokinetics, Diastol Therapeutics, Edwards Lifesciences, Eidos, eMyosound, Ensho, Fauna Bio, Intellia, Ionis, Lilly, Merck, Novartis, Novo Nordisk, OrbiMed, Pfizer, Prothena, Regeneron, Rivus, SalubriusBio, Sardocor, Shifamed, Tectonic, Tenax, Tenaya, Ulink Labs, and Ultromics

All relevant financial relationships have been mitigated Faculty disclosure information can be found on the app

Corvia Atrial Shunt Device

- Self-expanding nitinol cage
- Double-disc, flush with LA septum
- Single, 8-mm shunt diameter
- REDUCE LAP-HF I: ↓Exercise PCWP at 1 month

Proposed mode of action: dynamic decompression of overloaded LA by shunting blood from LA \rightarrow RA (Qp:Qs 1.2-1.3)

REDUCE LAP-HF II (n=626): Primary results

Shah SJ, et al. Lancet 2022

Are atrial shunts harmful in HFpEF?

RELIEVE-HF HFpEF group (LVEF ≥40%)

Stone GW, et al. Circulation 2024

REDUCE LAP-HF II: Pre-specified subgroups

Shah SJ, et al. *Lancet* 2022

REDUCE LAP-HF II: Responder analyses

Pre-specified + post-hoc subgroup analyses:

- ---> Identified a potential responder subgroup
- --->50% of randomized patients (n=313)
- ---> Peak exercise PVR <1.74 WU + no pacemaker/ICD

---> After 12 months of follow-up: Beneficial treatment response

Borlaug BA...Shah SJ Circulation 2022

Effect of shunt on KCCQ across peak exercise PVR

Change in KCCQ from baseline to 12 months

Borlaug BA...Shah SJ. Circulation 2022

Peak PVR vs. \Delta **PCWP-** \Delta **RAP difference**

- Prior to randomization, patients with ↑peak exercise PVR had:
 → ↓Augmentation of PCWP
 → ↑Augmentation of RAP
- Which leads to lower △ PCWP-△ RAP difference during exercise
 - ---> In patients with ↑peak PVR, RA pressure is rising much more relative to the rise in LA pressure
 - \longrightarrow Not optimal for L \rightarrow R shunting

Peak PVR vs. \Delta **PCWP-** \Delta **RAP difference**

- Therefore, patients with ↑PVR at peak exercise have ↓PCWP-RAP gradient at peak exercise
 Conversely, patients with ↓PVR at peak exercise have↑PCWP-RAP gradient during exercise, which is
 - optimal for $L \rightarrow R$ shunting and unloading of the LA
- May explain why \U224 PVR_{peak} (<1.74 WU) were treatment responders

Importance of recognizing latent PVD in HFpEF

Oakland HT, Shah SJ. JACC Heart Fail 2023

REDUCE LAP-HF II: Responder analyses

2-year HF event rate analysis: atrial shunt vs. sham

♥<u>CRF'</u> TH1

Borlaug BA...Shah SJ. Circulation 2022; Gustafsson F...Shah SJ. JACC Heart Fail 2024

Efficacy and safety of atrial shunts in HFpEF

Depends on phenotype...

Efficacy and safety of atrial shunts in HFpEF

Depends on phenotype...

Longitudinal echocardiographic analysis

• **Responders** (peak PVR <1.74 <u>and</u> no PPM/ICD): \uparrow Left heart unloading + \uparrow LA function \rightarrow \downarrow RV enlargement + \uparrow RV systolic function \rightarrow \uparrow delivery of shunted blood through lungs = preserved LV cardiac output

PPM = permanent pacemaker; †Interaction P<0.05

Patel RB...Shah SJ. JAMA Cardiol 2024

Longitudinal echocardiographic analysis

- **Responders** (peak PVR <1.74 <u>and</u> no PPM/ICD): \uparrow Left heart unloading + \uparrow LA function \rightarrow \downarrow RV enlargement + \uparrow RV systolic function \rightarrow \uparrow delivery of shunted blood through lungs = preserved LV cardiac output \Longrightarrow MPROVED OUTCOMES
- **Non-responders** (peak PVR \geq 1.74 or PPM/ICD):

↑RV enlargement but no improvement in RV systolic function $\rightarrow \downarrow$ left heart unloading, \downarrow improvement in LA function \rightarrow \downarrow delivery of shunted blood through lungs = ↑RA pressure + \downarrow LV cardiac output

PPM = permanent pacemaker; †Interaction P<0.05

Patel RB...Shah SJ. JAMA Cardiol 2024

REDUCE LAP-HF II: 5-year primary results*

Responder group: Components of the win ratio

Outcome at 5 years	Responders (n=313)		P-valuo
	Atrial shunt	Sham control	r-value
CV death or non-fatal	9.3	10.0	0.61
ischemic stroke (95% CI)	(2.3-16.3)	(0.0-20.0)	0.01
CV death	7.4	7.6	0.66
(95% CI)	(1.1-13.7)	(0.0-16.6)	0.00
Non-fatal ischemic stroke	1.9	1.5	0 02
(95% CI)	(0.0-5.4)	(0.0-7.9)	0.02
Total rate of HF events	10	15	0.014
per 100 patient years	10	10	0.014
Delta KCCQ	19.4	7.2	0.007
(median [IQR])	(8.1, 36.7)	(-9.8, 19.7)	0.007
Win ratio	1.44 (0.98, 2.12)		0.066

Responder group: Cumulative HF events at 5 years

Responder group: ΔKCCQ-OSS (baseline to 60 months)

RESPONDER-HF: Trial design

REDUCE LAP-HF II

50% of population benefited significantly despite overall neutral trial

OVERALL POPULATION (n=626) Neutral primary outcome (win ratio=1)

RESPONDER GROUP (n=313)

Positive outcome (win ratio=1.5, p=0.004) in patients with normal exercise PVR (<1.74 WU) and no cardiac rhythm device

RESPONDER-HF

Confirmatory trial to validate Responder Group outcomes observed in REDUCE LAP-HF II

Randomized, double-blinded, **Study Design** sham-controlled Enrolling Q4 '22 Status Approximately 60 sites **Clinical Sites Participants** 260 randomized 1:1 Population

HFpEF & HFmrEF (EF≥40%)

Primary Composite Endpoint

- Rate of total HF events up to 24 months, analyzed when last randomized patient reaches 12 months
- KCCQ change from baseline to 12 months

Major Secondary Endpoint

Cardiovascular mortality through 12 months

RESPONDER-HF: Screening committee

LV and LA get smaller: Avoid HCM, avoid low output states

RV and RA get bigger: Avoid vulnerable RV, overt RV failure, RA failure

Tricuspid annulus will dilate: Avoid moderate or greater TR

Blood needs to get back to left heart: Avoid pulmonary vascular disease, tricuspid/pulmonary valve obstruction

RESPONDER-HF: Screening committee

Example of a patient who was screened out of RESPONDER-HF by screening committee despite meeting all noninvasive I/E criteria

RESPONDER-HF: Screening committee

Echocardiographic evidence of significant pulmonary vascular disease

Conclusions

- Corvia Atrial Shunt Device:
 - ---> Reduces exercise PCWP
 - → ↓**HF events and** ↑**health status in responders** (Ex. PVR <1.74 + no PM/ICD)
 - → **↑HF events and ↓health status in non-responders** (Ex. PVR ≥1.74 WU <u>or</u> PM/ICD)
- HFpEF is heterogeneous: one size does not fit all!
- Exercise-based phenotyping: critical for patient evaluation
- RELIEVE-HF HFpEF group: sick patients with exaggerated nonresponder phenotype → poor response to atrial shunt
- Both REDUCE LAP-HF II and RELIEVE-HF provide strong rationale for RESPONDER-HF confirmatory trial

