TECHONOLOGY AND HEART FAILURE THERAPEUTICS 2022 SCIENTIFIC SESSIONS

REDUCE LAP-HF II Pivotal Trial: *Primary Results*

Sanjiv J. Shah, MD

Stone Professor of Medicine Director of Research, Bluhm Cardiovascular Institute Director, Northwestern HFpEF Program Division of Cardiology, Department of Medicine Northwestern University Feinberg School of Medicine sanjiv.shah@northwestern.edu • http://www.hfpef.org • Twitter: @HFpEF

NORTHWESTERN UNIVERSITY FEINBERG SCHOOL OF MEDICINE

Disclosure statement of financial interest

• Within the past 12 months, I or my spouse/partner have had a financial interest/arrangement or affiliation with the organization(s) listed below:

Affiliation/Financial Relationship	Company			
Grant/Research Support	Corvia, Pfizer			
Consulting Fees/Honoraria	AstraZeneca, Aria CV, Axon Therapies, Bayer, Boehringer-Ingelheim, Boston Scientific, Edwards Lifesciences, Eidos, Imara, Ionis, Merck, Novartis, Novo Nordisk, Pfizer, Prothena, Regeneron, Rivus, Roche, Shifamed, and Tenaya			
Royalty Income	UpToDate, Springer			
Major Stock Shareholder/Equity	None			
Ownership/Founder	None			
Intellectual Property Rights	None			
Other Financial Benefit	None			

• Faculty disclosure information can be found in the app.

REDUCE LAP-HF II study leadership

Steering committee:

- ✓ Sanjiv J. Shah, MD (co-PI)
- Martin B. Leon, MD (co-PI)
- ✓ Donald E. Cutlip, MD
- Scott D. Solomon, MD
- Dirk J. van Veldhuisen, MD, PhD

• Sponsor:

Jan Komtebedde, DVM

• Former SC members:

- Laura Mauri, MD, MSc
- Ted Feldman, MD

Corvia Atrial Shunt

- Self-expanding nitinol cage
 Double-disc, flush with LA septum
- Single, 8-mm shunt diameter

Proposed mode of action: dynamic decompression of overloaded LA chamber by shunting blood from LA → RA (Qp:Qs 1.2-1.3)

Feldman T...Shah SJ. Circ Heart Fail 2016

Corvia clinical evidence pipeline

Pilot Study → CE Mark Study → REDUCE LAP-HF I → REDUCE-LAP HF II

• Pilot study (n=11): non-randomized, single-arm

✓ Completed (Søndergaard L, et al. *Eur J Heart Fail* 2014)

• CE Mark Study (n=64): non-randomized, single-arm

Completed (Hasenfuß G...Kaye D. Lancet 2016; Kaye D, et al. ESC Heart Fail 2019)

• REDUCE LAP-HF I (n=44): RCT mechanistic study

✓ Completed (Feldman T...Shah SJ. Circulation 2017; Shah SJ, et al. JAMA Cardiol 2018)

• **REDUCE LAP-HF II (n=626):** RCT pivotal study

✓ Completed (Shah SJ...Leon MB. *Lancet* 2022)

REDUCE LAP-HF I RCT: Δ PCWP at 1 mo.

CONTROL

CORVIA IASD

Feldman T...Shah SJ. Circulation 2018

REDUCE LAP-HF I RCT: Outcomes at 1 yr.

Endpoint	Atrial shunt device (N=21)	Sham procedure (N=22)	P-value
NYHA class	-1 (-1 to 0)	0 (-1 to 0)	0.08
6MWT distance, meters	+16 (-57 to 30)	+13.6 (-10 to 72)	0.31
KCCQ clinical summary score	+10.4 (-6.5 to 26.0)	+3.1 (-4.2 to 18.8)	0.25

Cumulative incidence of MACCRE

Shah SJ, et al. JAMA Cardiol 2018

Cumulative incidence of HF

Hypothesis

Placement of the Corvia Atrial Shunt in patients with HF, EF ≥40%, and exercise PCWP ≥25 mmHg, compared to sham control, will have:
✓ Similar rates of CV death and non-fatal stroke
✓ Lower rates of HF events (first and recurrent)
✓ Improved health status (KCCQ)

Design overview

 Prospective, multi-center, randomized (1:1), sham-controlled, blinded trial ✓ 89 sites in US, Canada, Europe, Australia, Japan Rigorous echocardiographic and invasive exercise hemodynamic screening ✓ All patients underwent femoral venous access and visualization of the interatrial septum (ICE or TEE) ✓ Cross-over allowed at 24 months

Berry N...Shah SJ. Am Heart J 2020

Key inclusion/exclusion criteria

Inclusion criteria:

- History of chronic HF
- ✓ Age ≥40 years
- ✓ NYHA II or III symptoms
- ✓ LVEF ≥40%
- ✓ Exercise PCWP ≥25 mmHg
 ✓ PCWP-RA pressure ≥5 mmHg

• Exclusion criteria:

- ✓ Cardiac index <2.0 L/min/m²
- ✓ Previous EF <30%
- ✓ CVA, TIA, DVT, PE in past 6 mo.
- Greater than mild RV dysfunction/enlargement
- ✓ Moderate or greater TR
- Resting RA pressure >14 mmHg
- Resting PVR >3.5 WU
- ✓ BMI ≥45 kg/m²
- eGFR <25 ml/min/m²

Berry N...Shah SJ. Am Heart J 2020

Primary and secondary endpoints

Primary efficacy endpoint:

- Hierarchical composite endpoint:
 - ----> CV death or non-fatal ischemic stroke through 12 months
 - ---> Total HF events (first and recurrent) through 24 months
 - ---> Change in KCCQ overall summary score (baseline to 12 months)
- Secondary efficacy endpoints:
 - Total HF events through 24 months
 - Change in KCCQ overall summary score (baseline to 12 mo.)
 - Change in NYHA class (baseline to 12 mo.)

Safety endpoints

- Composite safety endpoint (through 12 months):
 - Cardiovascular death
 - ✓ Non-fatal ischemic stroke
 - ✓ New-onset or worsening renal function (\downarrow GFR >20 mL/min/1.73 m²)
 - Major cardiac events: cardiac death, MI, cardiac tamponade, or emergency cardiac surgery
 - Thromboembolism (TIA, systemic embolization)
 - Newly acquired atrial fibrillation or atrial flutter
 - ✓ ≥30% in \uparrow RV size or ≥30% \downarrow TAPSE

Statistical analysis

- Power calculation based on REDUCE LAP-HF I trial:
 - ✓ Assumptions:
 - ---> Combined CV death/CVA rate of 5% in each arm
 - ----> HF event rate of 0.39 per year in shunt arm, 0.50 per year in sham arm
 - ----> KCCQ improvement of +13 (SD 20) in shunt arm, +8 (SD 20) in sham arm
 - ✓ Sample size of n=304 per arm \rightarrow 85% power, α =0.05 (assumed a drop-out rate of 7.5% in each arm)
- Primary endpoint analysis:
 - Finkelstein-Schoenfeld hierarchical composite endpoint
 - ---> Combines time-to-event (CV death, CVA), recurrent (HF events), and continuous (KCCQ) endpoints
 - Win ratio (1 = neutral, >1 = treatment better, <1 sham better)</p>

Patient disposition flow chart

N=1072 enrolled patients with symptomatic chronic HF, EF ≥40%

N=769 underwent invasive exercise hemodynamics

N=303 screen failures:

- N=245 did not meet I/E criteria
- N=58 withdrew before study procedures

N=137 screen failures:

Did not meet hemodynamic I/E criteria

Patient disposition flow chart

Baseline characteristics

- Older, majority (62%) women
- Multiple comorbidities
- Most (78%) NYHA class III
- Majority (93%) HFpEF (EF≥50%)
- Very poor health status (median KCCQ-OSS 46)
- ↓Exercise capacity, ↑NTproBNP
- Median resting PCWP = 18 mmHg but 29% of enrolled patients had resting PCWP < 15 mmHg
- All patients had peak exercise PCWP ≥25 mmHg and 95% of patients had PCWP/CO ratio > 2.0

Baseline characteristics

Characteristic	Atrial shunt device (N=314)	Sham procedure (N=312)	
Age, years	73	72	
Female	64%	59%	
Body mass index, kg/m ²	31.6	32.2	
Hypertension	89%	87%	
Diabetes	37%	37%	
Atrial fibrillation	50%	53%	
NYHA class III	77%	78%	
HF hospitalization in last 12 mo.	26%	32%	
NTproBNP, pg/ml (sinus rhythm)	301	344	
NTproBNP, pg/ml (atrial fibrillation/flutter)	1008	1230	
KCCQ-OSS	46	45	
HFpEF (EF ≥50%)	93%	93%	

Median values shown for all continuous variables

Baseline medications

Medications	Atrial shunt device (N=314)	Sham procedure (N=312)
Loop diuretics	83%	81%
MRAS	53%	51%
SGLT2 inhibitors	2%	4%
Sacubitril/valsartan	2%	2%
ACE-inhibitors	24%	25%
Angiotensin receptor blockers	39%	37%
Beta-blockers	70%	70%
Oral anticoagulants	47%	52%
Aspirin	37%	40%
Other anti-platelet therapy	11%	12%

Echocardiography

Echocardiographic parameters	Atrial shunt device (N=314)	Sham procedure (N=312)	
LV ejection fraction, %	60	60	
LV mass, g	164	159	
LV GLS, % (absolute value)	17.4	17.9	
E/A ratio	1.1	1.1	
E/e' ratio (septal)	14	14	
LA volume index, ml/m ²	33	7 31	
LA reservoir strain, %	18	21	
TAPSE, mm	20	20	
RA volume index, ml/m ²	26	24	

Median values shown for all variables

Of the overall cohort, 30% had abnormal LV GLS and 6% had abnormal TAPSE

Resting hemodynamics

Hemodynamics	Atrial shunt device (N=314)	Sham procedure (N=312)	
Heart rate, bpm	70	70	
Systolic BP, mmHg	144	143	
RA pressure, mmHg	9	9.20	
PA mean, mmHg	26	26	
PCWP, mmHg	18	17	
PCWP-RAP gradient, mmHg	9	8	
Cardiac output, L/min	5.2	5.2	
PVR, WU	1.5	1.5	

Median values shown for all variables

29% of patients had PCWP < 15 mmHg at rest (≥25 mmHg during exercise)

Exercise hemodynamics

Peak exercise hemodynamics	Atrial shunt device (N=314)	Sham procedure (N=312)
HR, bpm	100	100
SBP, mmHg	154	156
RAP, mmHg	18	18
PCWP, mmHg	34	34
PCWP-RAP gradient, mmHg	16	16
Cardiac output, L/min	7.8	7.9
PCWP/CO ratio (normal < 2.0)	4.4	4.4
PVR, WU	1.3	1.3
Workload, Watts	40	40

Median values shown for all variables

95% of patients had abnormally high PCWP/CO ratio

RESULTS

Primary composite endpoint

- Finkelstein-Schoenfeld p-value=0.85
- Win ratio: 1.0 (95% 0.8-1.2)

Efficacy endpoints

Efficacy endpoint	Atrial shunt device (N=309)	Sham procedure (N=312)	P-value
CV death or non-fatal ischemic stroke	1% (4 events)	1% (2 events)	0.41
CV death	1% (3 events)	1% (2 events)	0.65
 Non-fatal ischemic stroke 	<1% (1 event)	0% (0 events)	0.32
Total HF events per patient-year	0.28	0.25	0.45
Change in KCCQ-OSS	10.2 (-1.8, 26.8)	9.4 (-2.1, 22.9)	0.73
Change in NYHA class	-0.5 (-1.0, 0.0)	0.0 (-1.0, 0.0)	0.006

Modified intention-to-treat population (excludes 5 patients who did not receive shunt device in active treatment arm)

Safety endpoints

Safety endpoint	Atrial shunt device (N=309)	Sham procedure (N=312)	P-value
Composite safety endpoint	38%	31%	0.11
New-onset worsening renal function	1%	1%	0.66
Major cardiac events	4%	1%	0.025
Cardiac death	1%	1%	1.00
Myocardial infarction	2%	<1%	0.14
Cardiac tamponade	1%	0%	0.95
Emergency cardiac surgery	<1%	0%	0.96
Embolic complications	0%	0%	\frown
Newly acquired atrial fibrillation/flutter	1%	1%	0.42
≥30% ↑RV size or ≥30% ↓TAPSE	30%	25%	0.15

Modified intention-to-treat population (excludes 5 patients who did not receive shunt device in active treatment arm)

Additional results

• Vascular complications:

✓ 18 events in 13 patients in atrial shunt arm (4% of patients; most of these events were access site hematomas) ✓ 0 events in sham procedure arm Periodic blinding questionnaire at study visits: ✓ In 96% of randomized patients, the patients and blinded study staff remained blinded to treatment allocation throughout the duration of the study

Effect of COVID

Primary endpoint	Overall outcome			Pre-COVID outcome		
	Win ratio (95% CI) P-value		Win ratio (95% CI)		P-value	
Composite endpoint	1.0 (0.8, ⁻	1.2)	0.85	1.1 (0.7,	1.5)	0.78
Components of the 1° endpoint	Atrial shunt device	Sham procedu		Atrial shunt device	Sham procedure	P-value
CV death/non-fatal ischemic CVA	1%	1%	0.41	2%	2%	0.95
Total HF events, per patient year	0.28	0.25	0.45	0.36	0.38	0.82
Mean change in KCCQ-OSS	+11.5	+10.5	0.73	+13.2	+13.0	0.75

HF event rates decreased in the COVID era, but there was no difference between treatment groups in the pre-COVID or COVID eras with respect to efficacy outcomes

Pre-specified subgroup analyses

interaction p-value < 0.05

Summary

Corvia Atrial Shunt treatment:

 Reduces exercise PCWP compared to sham control First atrial shunt therapy to complete phase 2 and 3 trials • REDUCE LAP-HF II pivotal RCT (HF, EF \geq 40%) with exercise hemodynamics (N=626): *largest device trial in HFpEF to date* Majority (93%) HFpEF, typical HFpEF clinical characteristics \checkmark ✓ 29% had PCWP <15 mmHg at rest but ≥25 mmHg with exercise Placement of atrial shunt device did not reduce total rate of HF events or improve health status overall in HF with $EF \ge 40\%$ Subgroup analyses suggests a potential responder group

Clinical implications

.....

ONE-SIZE-FITS-ALL APPROACH

UNIFORM

TREATMENT

Heterogeneous group of patients with HFpEF

WORSENED

IMPROVED

NO

BENEFIT

REDUCE LAP-HF II: An enrichment trial

REDUCE LAP-HF II: Enriched for hypothesized responders based on screening echo and exercise invasive hemodynamics

IMPROVED (no exercise PVD)

NEUTRAL

(overall)

TARGETED TREATMENT

Heterogeneous group of patients with HFpEF

WORSENED (exercise PVD)

PVD = pulmonary vascular disease

Future directions: [↑]Precision medicine

ALL suspected HFpEF

Definite HFpEF (exercise PCWP ≥25 mmHg)

> Excluding RV dysfunction, ≥2+ TR, resting PVR >3.5 WU

> > Excluding PVD during exercise

> > > *PVD = pulmonary vascular disease, defined as abnormal ↑PVR during exercise (~1.8 WU or higher)

Most major pharma trials

REDUCE LAP-HF II trial

Large potential responder group for future trials of interatrial shunt devices (~67% of patients enrolled)

Simultaneous online publication

Atrial shunt device for heart failure with preserved and mildly reduced ejection fraction (REDUCE LAP-HF II): a randomised, multicentre, blinded, sham-controlled trial

Sanjiv J Shah, Barry A Borlaug, Eugene S Chung, Donald E Cutlip, Philippe Debonnaire, Peter S Fail, Qi Gao, Gerd Hasenfuß, Rami Kahwash, David M Kaye, Sheldon E Litwin, Philipp Lurz, Joseph M Massaro, Rajeev C Mohan, Mark J Ricciardi, Scott D Solomon, Aaron L Sverdlov, Vijendra Swarup, Dirk J van Veldhuisen, Sebastian Winkler, Martin B Leon, on behalf of the REDUCE LAP-HF II investigators*

Acknowledgements

THANK YOU Study patients and their families/caregivers Site investigators and study coordinators Clinical events committee Akshay Desai, MD; David Gossman, MD; Pablo Quintero, MD; David Thaler, MD Data safety monitoring board Paul Hauptman, MD; Jeffrey Feinstein, MD; John Orav, PhD; Maggie Redfield, MD; Michael Rinaldi, MD Core labs

- Echocardiography: Frank Silvestry, MD
- ✓ Hemodynamics: Ethan Rowin, MD